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Classical Neo-Hookean potential expression:

2

Exponential of stretch: Neohookean 

Matrix inversion, Logarithm of 

Jacobian, affect robustness

New formulation exploiting logarithmic strain:

No matrix inversion necessary 

→ numerical stability

Bonet, Javier, Antonio J. Gil, and Richard D. Wood. Nonlinear solid 

mechanics for finite element analysis: dynamics. Cambridge 

University Press, 2021.

Poya, Roman, et al. "Generalised tangent stabilised nonlinear elasticity: An automated 

framework for controlling material and geometric instabilities." Computer Methods in 

Applied Mechanics and Engineering 436 (2025): 117701.



Exponential of axis of rotation: Symmetric 
Incremental Rotations
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Sola, Joan, Jeremie Deray, and Dinesh 

Atchuthan. "A micro lie theory for state 

estimation in robotics." arXiv preprint 

arXiv:1812.01537 (2018).

Rodrigues' Rotation Formula. Rotation can 

be expressed with finite sum series.

Polar decomposition (material)

    

                     

  



Example application: Bushing

4
* mock-up bushing geometry



Example application: Structural integrity 
problems
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Messy issue of contact (robustness trumps 
efficiency in framework design)
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➢ On exchange surfaces, we share:

current positions, tractions

➢ The kd-tree is built on contact surfaces

➢ Aircraft's shadow projection method

➢ Contact surface mesh is arbitrarily refined

(take into account HO-approximation) 
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Plasticity, contact, 
damage & fracture

➢ Structural integrity problems are difficult to scale – heterogeneous 

materials and complex geometry with many components.

➢ In structural integrity problems, the devil is in the unilateral 

constraints, plasticity at integration points, contact on surfaces, or 

the crack front.

➢ Strongly nonlinear problems: constitutive equations, history, 

geometrical nonlinearities, topology evolution & boundary 

conditions.

➢ Unavoidable approximation and integration error. Plastic/Contact 

fronts, Cracks, Wrinkling, Creases, and Cusps, etc

Mechanics



8

First commit June 2013

Scientific Management

➢Łukasz Kaczmarczyk

➢Chris Pearce

➢Andrei Shvarts

➢Andrew McBride

➢Vihar Georgiev

Core Developers

➢Karol Lewandowski

➢Adriana Kuliková

➢Callum Runcie

➢Ross Williams

Users Modules Contributors

➢Richard Olley

➢Joshua Gorham

➢MD Tanzib Ehsan Sanglap

➢Yingjia (Leo) Gao

➢Ananya Bijaya

➢Lily Sierra Fisher

➢Oliver Duncan

➢Bohdan Shevchenko

Clyde Offices
48 West George Street

Glasgow G2 1BP

Me s H- Or ie n t e d  
So lu t io n s

+44 (0) 759 224 5868

karol@mesh-oriented-solutions.com
www.mesh-oriented-solutions.com

Mo S

Multiphysics 

Simulations Consultancy

Dr Karol Lewandowski

AR demo

add contact

14 Past Contributors



• Core library has ~270,000 lines of 
code

• Code made by ~50 contributors

• It would take ~70 years of work of a 
single programmer to write that code 
(according to COCOMO model - 
OpenHub)

• It is mostly written in C++

• Open repository and MIT license
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In a nutshell 
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MoFEM ecosystem
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MoFEM ecosystem

Matrices, vectors 

and many solvers
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MoFEM ecosystem

Matrices, vectors 

and many solvers

Mesh and data

Can be either open-

source or proprietary

Open-source MIT 

license

All can be shipped in 

a Docker container

Material behaviour 

models



High Level Design
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MoFEM Features

➢ We aim at the whole de Rham complex: L2, H-div, H-

curl, and H1.

➢ L2/DG, H1/DG, and other energetic spaces are also 

included.

➢ Hierarchical approximation bases.

➢ Scalar, vectorial and tensorial bases.

➢ Hierarchical (p-adaptivity) and Beristain-Bezier base

DG-upwind advection of 

level set: Tutorial ADV-3. 

Shallow-Wave equation 

on generic curved surfaces



MoFEM Design – Industry First Approach
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➢ Core library (abstraction levels) and modules with physics implementation – 

two different repositories, licensing, copyright when needed. 

➢ Hollywood model (you do not call us, we call you) – development patterns - 

high code coverage - research code short pathway to application.



Finite Element is a pipeline of operators
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Leverage testing through science applications 

15

Cell surface reconstruction using ToI

Efremov Y.M. et al., 2020

Simulation of nanoindentation for AFM of cellsBone remodelling & fracture

D. Lockington, et al. 2022

Microfluidics

Rieman L., et al. 2023

Liver cell

Fluid-structure interaction Photon diffusion through turbid media

Geotechnics

Lewandowski K., et al., 2021
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Nuclear power in the UK 

Advanced gas-cooled reactors (AGR) 
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Nuclear power in the UK 

≈20% of energy 

from nuclear power

Advanced gas-cooled reactors (AGR) 
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Gas 

circulator

Pump

Water

Sea

Pump

Electricity to grid

Electricity 

generator

Steam

Control rods

Boiler

coolant

CO2

Steel-lined concrete

pressure vessel 

(biological shield)

Graphite 

moderator

Fuel 

assemblies

Warm water

Cool water

Graphite bricks:

• neutron moderator

• mechanical stability

• thermal inertia

Nuclear power in the UK 

≈20% of energy 

from nuclear power

Advanced gas-cooled reactors (AGR) 



Thermomechanical model
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wW
AΓ , UΓ F ,  

First Law

crack deformable body

crack front

external

forces



Fracture process
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6

where Ψ̂ is the specific free energy function. Given the relation in Eq. (14) and that dV̇ =

∇ X · Ẇ dV , Eq. (25) can beexpressed as

˙UB t
=

B t

{ P : ∇ X ẇ + Σ : ∇ X Ẇ } dV (26)

where

P :=
∂Ψ(F)

∂F
, Σ := Ψ(F)1 − FTP, (27)

are thefirst Piola-Kirchoff stressand Eshebly stresstensors, respectively. Therefore, thefirst law of

thermodynamics, P = ˙UΓ + ˙UB t
, can beexpressed as

∂ B t

ẇ · t − Ẇ · FTt dS =
∂Γ

γA ∂ Γ · Ẇ dL +
B t

{ P : ∇ X ẇ + Σ : ∇ X Ẇ } dV (28)

In order to get a local form of the first law, the Gauss divergence theorem is applied to the last

integral in Eq. (28) resulting in thefollowing expression

∂ Γ

γA ∂ Γ · Ẇ dL =
B t

ẇ · { ∇ X · P} dV +
B t

Ẇ · { ∇ X ·Σ } dV

+
∂ B t ∪Γ + ∪Γ −

ẇ · { t − PN } dS +
∂ B t ∪Γ + ∪Γ −

Ẇ · { FTt + ΣN } dS

−
∂ Γ

ẇ · lim
|L n|→0 L n

PN dS +
∂Γ

Ẇ · lim
|L n|→0 L n

ΣN dS.

(29)

The spatial and material conservation laws of linear momentum balance, for any point inside the
body, areexpressed as:

∇ X · P = 0, ∇ X ·Σ = 0 (30)

and considering admissible velocity fields and stress fields in equilibrium with external forces, we

obtain the following:

∂ Γ

γA ∂ Γ · Ẇ dL −
∂Γ

Ẇ · lim
|L n|→0 L n

{ΣN } dS = 0 (31)

Thus, the local form of thefirst law is:

Ẇ · (γA ∂Γ − GΓ ) = 0 (32)

where the configurational (or material) force at the crack front, that is driving the crack extension,

isdefined as:

GΓ = lim
|L n|→0 L n

ΣN dL (33)

Eq. (32 ) represents the equilibrium condition for the crack front. One solution is trivial, i.e. that

thereisnocrack growth (Ẇ = 0); another solution isthat (γA ∂Γ − GΓ ) = 0; athird solution isthat
Ẇ isorthogonal to (γA ∂Γ − GΓ ). Therefore, thefirst law tellsuswhen thecrack is in equilibrium

but not how it will evolve. This requires thesecond law of thermodynamics.
Sincethefreeenergy of theelastic body can betransformed into work at thecrack front (or other

forms of energy) but no energy is stored on the crack surface that can be used to do mechanical

work on thebody, the local variant of thesecond law issimply given as:

D := γẆ · A ∂Γ ≥ 0. (34)

whereD is thedissipation of energy per unit lenght of thecrack front and isequivalent to the local

changeof thecrack surface internal energy. Thisequation expresses theconstraint that aphysically
admissibleevolutionof thecrack isrestricted topositivecrack areagrowth at each point of thecrack

Copyright c 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme

Entropy (nothing) is never like it was before

A @Γ

G @Γ
γA @Γ

rough surface

Second Law
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Force balance at the crack front

3 cases:

KKT for crack propagation:

Balance:

Complementarity function:
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Fracture of irradiated graphite bricks
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Fracture of irradiated graphite bricks
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Fracture of irradiated graphite bricks

Athanasiadis, I., 

Shvarts, A.G. et al. 

CMAME (2023) 

Scan to access 

paper



Analysis geometry
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Graphite components Steel collar Steel wedge

Crack seed

Seal ring components
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Simulation

Crack front

Crack lips 

on surface

ALE components 

on crack tip
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Simulation

Crack front

Crack lips 

on surface

ALE components 

on crack tip
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Comparison with the experiment



Mixed Elasticity Formulation
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Generalised Hu-Washizu functional

Consistency equation:

Physical equation:

Conservation of angular momentum:

Conservation of linear momentum:
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H(div) main properties 

[1] Boffi D, Brezzi F, Fortin M. Mixed finite element 
methods and applications (2013)

Normal component of H(div) function is 
continuous across any inner boundary:

 

Natural space for flow/diffusion problems

(Classic example: Raviart-Thomas FE space)



2019 UKACM Conference City, University of London

Figure 1: From the left ; Cauchy stress σxx distribution, σxx on cut (to compare see [4]), displace-

ment ux (to compare see [4]).

where y is cofactor y = Jh− T , j is Jacobian of h, and f is defined as follows

f q(j ) = − 24β ln(j ) − 12↵ ln(j ) +
λ

2"2
(j " + j − " ) (14)

Results are presented on figure 1. The model has 1,575,600 DOFs; stresses and rotations are approxi-

mated with 3rd order polynomials, and displacements 2nd order. The DOFs for stretches and bubble

functions were solved using the Schur complement, one-by-one at element level.

The geometrical nonlinearities were linearised analytically, and the physical relation, as a function of

stretches, is linearised using automatic di↵erentiation with ADOL-C, starting from the strain energy

function.

Conclusions

The proposed finite element formulation has excellent potential. It enables separation of nonlinearities

that allows for robust solution schemes, good quality solution of stresses, and overall low-regularity.

This will enable the unification of configurational mechanics and plasticity in the future.

References

1 Gopalakrishnan, Jayadeep, and Johnny Guzmn. ” A second elasticity element using the matrix

bubble.” IMA Journal of Numerical Analysis 32.1 (2012): 352-372.

2 Arnold, Douglas, Richard Falk, and Ragnar Winther. ” Mixed finite element methods for linear

elasticity with weakly imposed symmetry.” Mathematics of Computation 76.260 (2007): 1699-

1723.

3 Kaczmarczyk, Lukasz, Ullah, Zahur, Lewandowski, Karol, Meng, Xuan, Zhou, Xiao-Yi, Pearce,

Chris, Miur, Euan. (2018, November 18). MoFEM-v0.8.16. http:/ / doi.org/ 10.5281/ zenodo.1490890

4 Bonet, Javier, Antonio J. Gil, and Rogelio Ortigosa. ” A computational framework for polyconvex

large strain elasticity.” Computer Methods in Applied Mechanics and Engineering 283 (2015):

1061-1094.

4

Riviart-Thomas (RT) Demkowicz recipe

matrix bubble
Antisymmetric matrix 

homogenous polynomial

Spaces



Why mixed formulation with stress 
approximation
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✓ Separation of non-linearities as different equations

✓ Conservation equations (momentum flux continuity) is satisfied a priori

✓ Trades floating point operations to local and temporal memory access

✓ Weaker (ultra weak formulation) suitable for unilateral constraints emerging from 
contact, fracture, plasticity and geometric instabilities

✓ Sparse Dense Block Structure 

✓ Future hardware ready (GPUs)



Updated Lagrangian  formulation

28

Mathematical formulations for small strains:

Gopalakrishnan, J., & Guzmán, J. (2012). A second elasticity element using the matrix bubble. IMA Journal of Numerical 

Analysis, 32(1), 352-372.

Reference

Intermediate

updated

Current

Deformation 

gradient
Orthonormal 

rotation tensor

Symmetric 

stretch tensor

Logarithm of  

stretch tensor

Physical values of stretches are 

larger than 1, while logarithm of 

stretch can take any finite value.

Variation:



Stenberg, R. (1988). A family of mixed finite elements for the elasticity 

problem. Numerische Mathematik, 53, 513-538.

Objectivity: Lagrangian and Total formulations have to yield the same 

result. Not exactly the case for mixed formulation. ???

Total vs update Lagrangian formulation

29

Reference

Intermediate

updated

Current



Cook beam (p-refinement)
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Displacement order 1 Displacement order 2 Displacement order 3 Displacement order 4 2019 UKACM Conference City, University of London

Figure 1: From the left; Cauchy stress σxx distribution, σxx on cut (to compare see [4]), displace-

ment ux (to compare see [4]).
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Cook beam (h-refinement)
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Figure 1: From the left; Cauchy stress σxx distribution, σxx on cut (to compare see [4]), displace-

ment ux (to compare see [4]).
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Cook beam: uniform mesh refinement study

32Jörg Schröder, Peter Wriggers, and Daniel Balzani, “A New Mixed Finite E lement Based on Different Approximations of the Minors of Deformation Tensors,” Computer Methods in Applied Mechanics and Engineering 

Javier Bonet, Anton io J. Gil, and Rogelio  Or tigosa, “A Computational Framework for Polyconvex Large Strain Elasticity,” Computer Methods in Applied Mechanics and Engineering 
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Twisting cantilever beam

• Large rotations

• Neo-Hookean material–using new formulation.



Pinched cylindrical shell
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Pullout of an open-ended 
cylindrical shell
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p-refinement

36

p=2 p=4p=3
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Exploiting block structure

Eliminate logarithmic 

stretches

Eliminate 

rotation

Eliminate normal 

stress bubbles

Three neighbors in 2d and 4 in 3D

(like quad mesh in finite volume method)

Each block 

corresponds to 

one FE

H-div data structure

Not well fit for of the shelf iterative solvers and their 

preconditioners

Multigrid is not trivial – Null Space – Neuman type problem



Hybridisation
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Three neighbors in 2d and 4 in 3D

(like quad mesh in finite volume method)

Boffi, Daniele, Franco Brezzi, and Michel Fortin. Mixed finite 

element methods and applications. Vol. 44. Heidelberg: 

Springer, 2013.

Dobrev, Veselin, et al. "Algebraic hybridization and static condensation with 

application to scalable H (div) preconditioning." SIAM Journal on Scientific 

Computing 41.3 (2019): B425-B447.
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Block preconditioner – Exact Schur complement

➢ Efficient block structure of Dense Block Matrices

➢ Block diagonal element by element

➢ Inverted exactly element by element

➢ Schur inversion is trivial

➢ Efficient to parallelize (GPU in perspective)
[10] PETSc/TAO Users Manual, https://petsc.org/

Invert exactly element-by-element

Use Algebraic Multigrid 

(AMG) to approximate 
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Hybridised solver
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Stability of contact formulation

  

[3] Flemisch, B. and Wohlmuth, B.I. Comput. Meth. Appl. Mech. Eng., 196(8), 2007. 

[4] Popp, A., et al., SIAM J. Sci. Comput., 79(11), 2009.
[5] Boffi D, Brezzi F, Fortin M. Mixed finite element methods and applications (2013)
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Stability of contact formulation

➢ Continuous functions
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Stability of contact formulation

➢ Continuous functions

  

Test: 2D wavy surface contact 

[3] Flemisch, B. and Wohlmuth, B.I. Comput. Meth. Appl. Mech. Eng., 196(8), 2007. 

[4] Popp, A., et al., SIAM J. Sci. Comput., 79(11), 2009.
[5] Boffi D, Brezzi F, Fortin M. Mixed finite element methods and applications (2013)



41

Stability of contact formulation

➢ Continuous functions

  

[3] Flemisch, B. and Wohlmuth, B.I. Comput. Meth. Appl. Mech. Eng., 196(8), 2007. 

[4] Popp, A., et al., SIAM J. Sci. Comput., 79(11), 2009.
[5] Boffi D, Brezzi F, Fortin M. Mixed finite element methods and applications (2013)



41

Stability of contact formulation

➢ Continuous functions

➢ Dual space [3,4] 
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Stability of contact formulation

➢ Continuous functions

➢ Dual space [3,4] 

  

➢ Raviart-Thomas space [5]

[3] Flemisch, B. and Wohlmuth, B.I. Comput. Meth. Appl. Mech. Eng., 196(8), 2007. 

[4] Popp, A., et al., SIAM J. Sci. Comput., 79(11), 2009.
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natural space for stress natural space for pressure
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PET (E = 2 GPA)
Electrode

Electrode

PMMA (E = 3 GPA)

PVS (E =3.5 MPa)

PMMA (E = 3 GPA)

0.127 mm

0.150 mm

50

Stability is essential for contact area  estimation

x

y

z

Andrei Shvarts

MD Tanzib 

Ehsan Sanglap



51

Contact area morphology (real roughness)

Experiment (interference reflection microscopy) Simulation

[8] Kumar C. et al. Nano Energy 107 (2023)
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Contact area morphology (real roughness)

Experiment (interference reflection microscopy) Simulation
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Signed distance function
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Sphere with radius     and centroid:

Signed distance function for a sphere:

Signed distance function defined for a domain      outside the surface 



Contact formulation
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One if positive gap, or positive traction, i.e. no contact

Contact projection operator

Tangent projection operator

Note: Hybridised displacement on skeleton (contact boundary is part of it), is a 

Lagrange multiplier enforcing contact constraints.
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Hertz contact problem

Result for displacements order 2:

Displacement error

Tractions

𝐸 = 1000 [𝑃𝑎]
𝜈 = 0.4

𝑢𝑧 = 0.01[𝑚𝑚]

𝑧

𝑥
𝑦

Symmetry BC:
𝑢𝑥 = 0

Symmetry BC:
𝑢𝑦 = 0

𝑅 = 100 [𝑚𝑚]
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bijection
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Fracture is natural,
for weakly enforced conformity

➢ Crack propagates by erasing rows 
and columns of the matrix. Matrix 
adjacency is fixed. That provides 
robustness

➢ Trace of H-div space is associated 
with faces, thus crack face energy 
can be easily estimated

➢ If crack propagate one face by one 
face, and iterative solver is 
deployed, crack propagation are 
resolved on linear solver level

Color represents z-axis rotation

Extension of face trace



#UofGWorldChangers

@UofGlasgow

Thank you for your attention!
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